Wednesday 15 April 2020

GRAB THE BENEFITS OF AUTODESK INVENTOR NASTRAN

Autodesk Inventor Nastran embedded with FEA Technology is a mechanical simulation tool, which was developed by Autodesk Inc. USA. Initially, the Nastran software was developed for NASA but now adopted by Autodesk as well which offers FEA simulation capabilities. This software simulates the mechanical structures and analyze the environmental conditions in order to check the responses of the structure. This tool is useful to simulate the linear and nonlinear FEA studies.


Apart from general engineering materials, Nastran can also be used to simulate and analyze the latest advanced materials, including composites, plastic, nonlinear elastic, shape memory, hyperelastic, viscoelastic, and brittle materials such as concrete.


It considers the unit system from the CAD, which is attached to the simulation, or else you can also set the units as per the requirements.

If we talk about the number of analyses capabilities, which we can perform, using Inventor Nastran then it supports a wide range of it. First, it is important that you understand the requirements, outputs, and limitations of the analysis type before using it. You can perform the below analysis types by using the software such as;
  1. Linear Static
  2. Normal Modes
  3. Linear Buckling
  4. Prestress Static
  5. Prestress Normal Modes
  6. Nonlinear Static
  7. Nonlinear Buckling
  8. Direct Transient Response
  9. Modal Transient Response
  10. Nonlinear Transient Response
  11. Direct Frequency Response
  12. Modal Frequency Response
  13. Random Response
  14. Shock/Response Spectrum
  15. Multi-Axial Fatigue
  16. Vibration Fatigue
  17. Linear Steady State Heat Transfer
  18. Nonlinear Steady State Heat Transfer
  19. Nonlinear Transient Heat Transfer


Inventor Nastran has also enabled the solution for contact analysis; you can set the contact type and tolerance, performance connectors simulation such as bolt etc.. This gives you the power to optimize the mesh to obtain the accurate results.


You can generate the line mesh, which can be used in uniform cross-sectional structures, mid surface mesh and shell mesh for sheet metal parts and solid mesh to generate the solid elements in the structure.

Meshing is the critical operation in FEA so it must be done with real scenarios in the study. In Finite Element Analysis, mesh size is very important; it is closely related to the accuracy and number of the element required in the mesh. By increasing the elements in the simulation, you get better and better results but once you get the optimum size of the mesh to obtain accurate result, it will not effect or difference is very less in the results more an less, you cannot change the other parameters of the simulation.  In other words, keep refining the mesh until you see no difference in your results.



The best part of this product is, Autodesk provides the subscription based licensed for this software at a very economical price. User can subscribe the license based on the need and work, so there is no extra cost for the product. It helps a lot to the independent consultant in order to offer their services at minimum cost. User can opt for the monthly or yearly subscriptions.



Autodesk Inventor Nastran is available as a standalone and network license, which provides consistent user experience, eliminate the need for multiple simulation technologies and delivers CAD-embedded workflow. In this, you can manage the license, transfer the license and it available only in the Product Design & Manufacturing Collection. To try the software capabilities you need to download the Inventor Nastran software and use its trial version free of cost.  For downloading the software use the below given link and you can also extract the price information details, system requirements, OS etc. as per needs.




Sunday 9 April 2017

Computer Aided Engineering (CAE) Market

Computer Aided Engineering (CAE) Market
Computer Aided Engineering (CAE) market can be segmented into Computational Fluid Dynamics (CFD), Finite Element Analysis (FEA), and Multi-Body Dynamics (MBD) tools.

The market is also classified on the basis of end use into electronics and electrical, defense, aerospace, automobile, and industrial machinery.

The market segments on the basis of geographical regions are North America, Europe, Asia Pacific, South America, and Middle East and Africa (MEA). Asia Pacific is expected to lead the CAE market owing to the increasing adoption of CAE tools and the emergence of large number of manufacturing industries in the region.

Sunday 20 November 2016

Finite Element Analysis (FEA) Technology in Engineering

Finite Element Analysis (FEA) Technology in Engineering
I have been involved in engineering simulation for 10 years. In past during my collage days, when I was studying in engineering, a good part of my course looked at the fundamentals of structural analysis such as strength of material, mechanics of machine and so on. We had spent an enough amount of time manually calculating the deformation and stress results of a beam element and trusses problems. I had learned two major things from this exercise. FEA was incredibly useful for real world engineering problems. I could get an engineering answer to a reasonably realistic problem by using the FEA technology approach. FEA software is must if you want to do this on a more meaningful way. FEA technology gives you, answer to an engineering problem very faster and optimize than any other way. From engineering point of view, you always wary about-

What about if the hole is bigger or smaller in the design? What if I made it out of aluminum instead of steel, or if the load increased or decreed?

To get the answer about all these question, you need a model that can be setup to Finite Element Analysis. Once its set up, run the simulation to get answer each of these questions.

Even with the fastest solver available now a days to solve the problems, if it takes a long time to build a model then total time to getting results might be restrictive. But, if you able to set-up an FEA model efficiently and get from geometry to solution as fast as possible depends on everything in between. So, performance definitely relies on solver speed, but also on usability and productivity of the FEA software and engineer. The most common question and problem occur in FEA to determining the stress intensity factors of a load applied on a model. This can be in the form of a structure analysis, solid mechanic analysis, dynamics, thermal analysis, electrical analysis, bio-materials, etc. Generally, FEA technology is used to calculate the component displacements, strains, and stresses result under internal and external loads conditions applied on the model. Most of the FEA calculations involved metallic components and can be analyzed by either linear or nonlinear stress analysis. The selection of the linear or nonlinear analysis, depends upon the stiffness and loads on the design.

FEA calculations and simulations are done in CAE/FEA software like ANSYS, SIMULIA/Abaqus, SOLIDWORKS Simulation and so on. A model is designed in a CAD software like CATIA, Inventor, Creo, SOLIDWORKS and imported into CAE software to be analyzed. By using FEA technology, never have an exact answer or solution of an FEA problem. It gives us approximate solution of engineering problems.

FEA is an important part of the product design and development process. It identifies where problems may occur in a product or component. FEA mathematically calculates the problematic areas of a model, and reduce the time and efforts to create a physical prototype. You can not make modification in prototype testing, easily and it you do it again and again then will increase the cost of the test. Same time prototype testing does not provide the numerical information but FEA testing gives you all the numerical information about the product testing to make the product development process easy.

Tuesday 20 September 2016

Finite Element Method(FEM)?

Finite Element Method(FEM)?
The Finite-Element Method(FEM) is a computational numerical solution method that divides a physical model or digital(CAD) model into very small but finite-sized elements of geometric shapes. The collection of all these shapes make a set that called finite-element mesh and the junction points of these shapes or elements called as node. In other words, mesh discretization take place in FEM. This is modeled by approximating the field conditions within each element as a simple function, such as a linear or quadratic polynomial, with a finite number of degrees of freedom (DOFs).


Alexander Hrennikoff (Russian; 1896 — December 31, 1984) was a Russian-Canadian Structural Engineer, and known as a founder of the Finite Element Method.



Richard Courant (January 8, 1888 – January 27, 1972) was a German American mathematician. R. Courant's name is also known for the finite element method, with his numerical solution of the plain torsion problem for multiply-connected domains, published a paper in 1943.



This method was first applied to structural analysis problems. Over the last ten years or so, it has been realized that the finite element method(FEM) is also suitable and fit for a large class of multi-physics problems. There are three mathematical ways or methods that FEM can use to evaluate the values at the nodes.

  • Non-variational method ( Ritz method)
  • Residual mehod (Galerkin ethod)
  • Variational method and(Rayleigh-Ritz method)
Finite Element Method is also known as Finite Element Analysis (FEA) and it is a technological application of FEM. You can not compute the solution of the equestions, created in the FEM. To solve these questions, you need to use computer adied technology which is FEA. FEA is applied in engineering as a computational tool for performing engineering analysis with the help of computer adied technology and use of software program coded with FEM algorithm. It includes the use of mesh generation techniques for dividing a complex field problem into small elements. The complex field problem is usually a physical system with the underlying physics such as the Euler-Bernoulli beam equation, the heat equation, or the Navier-Stokes equations expressed in either PDE or integral equations.